network

  IT博客 :: 首页 :: 联系 :: 聚合  :: 管理
  28 Posts :: 8 Stories :: 0 Comments :: 0 Trackbacks

[精华] 一份非常内行的Linux LVM HOWTO


http://www.chinaunix.net 作者:sannas  发表于:2007-11-08 09:25:27
发表评论】【查看原文】【Linux讨论区】【关闭

如果您刚接触嵌入式开发,那么大量可用的引导装载程序(bootloader)、规模缩小的分发版(distribution)、文件系统和 GUI 看起来可能太多了。但是这些丰富的选项实际上是一种恩赐,允许您调整开发或用户环境以完全符合您的需要。对 Linux 嵌入式开发的概述将帮助您理解所有这些选项。
Linux 正在嵌入式开发领域稳步发展。因为 Linux 使用 GPL(请参阅本文后面的参考资料),所以任何对将 Linux 定制于 PDA、掌上机或者可佩带设备感兴趣的人都可以从因特网免费下载其内核和应用程序,并开始移植或开发。许多 Linux 改良品种迎合了嵌入式/实时市场。它们包括 RTLinux(实时 Linux)、uclinux(用于非 MMU 设备的 Linux)、Montavista Linux(用于 ARM、MIPS、PPC 的 Linux 分发版)、ARM-Linux(ARM 上的 Linux)和其它 Linux 系统(请参阅参考资料以链接到本文中提到的这些和其它术语及产品。)

嵌入式 Linux 开发大致涉及三个层次:引导装载程序、Linux 内核和图形用户界面(或称 GUI)。在本文中,我们将集中讨论涉及这三层的一些基本概念;深入了解引导装载程序、内核和文件系统是如何交互的;并将研究可用于文件系统、GUI 和引导装载程序的众多选项中的一部分。

引导装载程序
引导装载程序通常是在任何硬件上执行的第一段代码。在象台式机这样的常规系统中,通常将引导装载程序装入主引导记录(Master Boot Record,(MBR))中,或者装入 Linux 驻留的磁盘的第一个扇区中。通常,在台式机或其它系统上,BIOS 将控制移交给引导装载程序。这就提出了一个有趣的问题:谁将引导装载程序装入(在大多数情况中)没有 BIOS 的嵌入式设备上呢?

解决这个问题有两种常规技术:专用软件和微小的引导代码(tiny bootcode)。

专用软件可以直接与远程系统上的闪存设备进行交互并将引导装载程序安装在闪存的给定位置中。闪存设备是与存储设备功能类似的特殊芯片,而且它们能持久存储信息 — 即,在重新引导时不会擦除其内容。

这个软件使用目标(在嵌入式开发中,嵌入式设备通常被称为目标)上的 JTAG 端口,它是用于执行外部输入(通常来自主机机器)的指令的接口。JFlash-linux 是一种用于直接写闪存的流行工具。它支持为数众多的闪存芯片;它在主机机器(通常是 i386 机器 — 本文中我们把一台 i386 机器称为主机)上执行并通过 JTAG 接口使用并行端口访问目标的闪存芯片。当然,这意味着目标需要有一个并行接口使它能与主机通信。Jflash-linux 在 Linux 和 Windows 版本中都可使用,可以在命令行中用以下命令启动它:

Jflash-linux <bootloader>;

某些种类的嵌入式设备具有微小的引导代码 — 根据几个字节的指令 — 它将初始化一些 DRAM 设置并启用目标上的一个串行(或者 USB,或者以太网)端口与主机程序通信。然后,主机程序或装入程序可以使用这个连接将引导装载程序传送到目标上,并将它写入闪存。

在安装它并给予其控制后,这个引导装载程序执行下列各类功能:

初始化 CPU 速度 
初始化内存,包括启用内存库、初始化内存配置寄存器等 
初始化串行端口(如果在目标上有的话) 
启用指令/数据高速缓存 
设置堆栈指针 
设置参数区域并构造参数结构和标记(这是重要的一步,因为内核在标识根设备、页面大小、内存大小以及更多内容时要使用引导参数) 
执行 POST(加电自检)来标识存在的设备并报告任何问题 
为电源管理提供挂起/恢复支持 
跳转到内核的开始



带有引导装载程序、参数结构、内核和文件系统的系统典型内存布局可能如下所示:

清单 1. 典型内存布局    /* Top Of Memory */ 

        Bootloader
        Parameter Area 
        Kernel 
        Filesystem

    /* End Of Memory */ 


 

嵌入式设备上一些流行的并可免费使用的 Linux 引导装载程序有 Blob、Redboot 和 Bootldr(请参阅参考资料获得链接)。所有这些引导装载程序都用于基于 ARM 设备上的 Linux,并需要 Jflash-linux 工具用于安装。

一旦将引导装载程序安装到目标的闪存中,它就会执行我们上面提到的所有初始化工作。然后,它准备接收来自主机的内核和文件系统。一旦装入了内核,引导装载程序就将控制转给内核。

设置工具链
设置工具链在主机机器上创建一个用于编译将在目标上运行的内核和应用程序的构建环境 — 这是因为目标硬件可能没有与主机兼容的二进制执行级别。

工具链由一套用于编译、汇编和链接内核及应用程序的组件组成。 这些组件包括:

Binutils — 用于操作二进制文件的实用程序集合。它们包括诸如 ar、as、objdump、objcopy 这样的实用程序。 
Gcc — GNU C 编译器。 
Glibc — 所有用户应用程序都将链接到的 C 库。避免使用任何 C 库函数的内核和其它应用程序可以在没有该库的情况下进行编译。



构建工具链建立了一个交叉编译器环境。本地编译器编译与本机同类的处理器的指令。交叉编译器运行在某一种处理器上,却可以编译另一种处理器的指令。重头设置交叉编译器工具链可不是一项简单的任务:它包括下载源代码、修补补丁、配置、编译、设置头文件、安装以及很多很多的操作。另外,这样一个彻底的构建过程对内存和硬盘的需求是巨大的。如果没有足够的内存和硬盘空间,那么在构建阶段由于相关性、配置或头文件设置等问题会突然冒出许多问题。

因此能够从因特网上获得已预编译的二进制文件是一件好事(但不太好的一点是,目前它们大多数只限于基于 ARM 的系统,但迟早会改变的)。一些比较流行的已预编译的工具链包括那些来自 Compaq(Familiar Linux )、LART(LART Linux)和 Embedian(基于 Debian 但与它无关)的工具链 — 所有这些工具链都用于基于 ARM 的平台。

内核设置
Linux 社区正积极地为新硬件添加功能部件和支持、在内核中修正错误并且及时地进行常规改进。这导致大约每 6 个月(或 6 个月不到)就有一个稳定的 Linux 树的新发行版。不同的维护者维护针对特定体系结构的不同内核树和补丁。当为一个项目选择了一个内核时,您需要评估最新发行版的稳定性如何、它是否符合项目要求和硬件平台、从编程角度来看它的舒适程度以及其它难以确定的方面。还有一点也非常重要:找到需要应用于基本内核的所有补丁,以便为特定的体系结构调整内核。

内核布局
内核布局分为特定于体系结构的部分和与体系结构无关的部分。内核中特定于体系结构的部分首先执行,设置硬件寄存器、配置内存映射、执行特定于体系结构的初始化,然后将控制转给内核中与体系结构无关的部分。系统的其余部分在这第二个阶段期间进行初始化。内核树下的目录 arch/ 由不同的子目录组成,每个子目录用于一个不同的体系结构(MIPS、ARM、i386、SPARC、PPC 等)。每一个这样的子目录都包含 kernel/ 和 mm/ 子目录,它们包含特定于体系结构的代码来完成象初始化内存、设置 IRQ、启用高速缓存、设置内核页面表等操作。一旦装入内核并给予其控制,就首先调用这些函数,然后初始化系统的其余部分。

根据可用的系统资源和引导装载程序的功能,内核可以编译成 vmlinux、Image 或 zImage。vmlinux 和 zImage 之间的主要区别在于 vmlinux 是实际的(未压缩的)可执行文件,而 zImage 是或多或少包含相同信息的自解压压缩文件 — 只是压缩它以处理(通常是 Intel 强制的)640 KB 引导时间的限制。有关所有这些的权威性解释,请参阅 Linux Magazine 的文章“Kernel Configuration: dealing with the unexpected”(请参阅参考资料)。

内核链接和装入
一旦为目标系统编译了内核后,通过使用引导装载程序(它已经被装入到目标的闪存中),内核就被装入到目标系统的内存(在 DRAM 中或者在闪存中)。通过使用串行、USB 或以太网端口,引导装载程序与主机通信以将内核传送到目标的闪存或 DRAM 中。在将内核完全装入目标后,引导装载程序将控制传递给装入内核的地址。

内核可执行文件由许多链接在一起的对象文件组成。对象文件有许多节,如文本、数据、init 数据、bass 等等。这些对象文件都是由一个称为链接器脚本的文件链接并装入的。这个链接器脚本的功能是将输入对象文件的各节映射到输出文件中;换句话说,它将所有输入对象文件都链接到单一的可执行文件中,将该可执行文件的各节装入到指定地址处。vmlinux.lds 是存在于 arch/<target>;/ 目录中的内核链接器脚本,它负责链接内核的各个节并将它们装入内存中特定偏移量处。典型的 vmlinux.lds 看起来象这样:

清单 2. 典型的 vmlinux.lds 文件 OUTPUT_ARCH(<arch>;)      /* <arch>; includes architecture type */ 
 ENTRY(stext)               /* stext is the kernel entry point */ 
 SECTIONS                   /* SECTIONS command describes the layout
                   of the output file */ 
 { 
     .  = TEXTADDR;         /* TEXTADDR is LMA for the kernel */ 
     .init : {          /* Init code and data*/ 
              _stext = .;       /* First section is stext followed 
                   by __init data section */ 
              __init_begin = .; 
                     *(.text.init) 
              __init_end = .; 
             } 
     .text : {          /* Real text segment follows __init_data section */ 
              _text = .; 
                     *(.text) 
              _etext = .;       /* End of text section*/ 
             } 
     .data :{ 
              _data=.;          /* Data section comes after text section */ 
                     *(.data) 
              _edata=.;  
             }                  /* Data section ends here */ 
     .bss : {                   /* BSS section follows symbol table section */ 
              __bss_start = .; 
                     *(.bss) 
              _end = . ;        /* BSS section ends here */  
             } 
  } 


 

LMA 是装入模块地址;它表示将要装入内核的目标虚拟内存中的地址。TEXTADDR 是内核的虚拟起始地址,并且在 arch/<target>;/ 下的 Makefile 中指定它的值。这个地址必须与引导装载程序使用的地址相匹配。

一旦引导装载程序将内核复制到闪存或 DRAM 中,内核就被重新定位到 TEXTADDR — 它通常在 DRAM 中。然后,引导装载程序将控制转给这个地址,以便内核能开始执行。

参数传递和内核引导
stext 是内核入口点,这意味着在内核引导时将首先执行这一节下的代码。它通常用汇编语言编写,并且通常它在 arch/<target>;/ 内核目录下。这个代码设置内核页面目录、创建身份内核映射、标识体系结构和处理器以及执行分支 start_kernel(初始化系统的主例程)。

start_kernel 调用 setup_arch 作为执行的第一步,在其中完成特定于体系结构的设置。这包括初始化硬件寄存器、标识根设备和系统中可用的 DRAM 和闪存的数量、指定系统中可用页面的数目、文件系统大小等等。所有这些信息都以参数形式从引导装载程序传递到内核。

将参数从引导装载程序传递到内核有两种方法:parameter_structure 和标记列表。在这两种方法中,不赞成使用参数结构,因为它强加了限制:指定在内存中,每个参数必须位于 param_struct 中的特定偏移量处。最新的内核期望参数作为标记列表的格式来传递,并将参数转化为已标记格式。param_struct 定义在 include/asm/setup.h 中。它的一些重要字段是:

清单 3. 样本参数结构 struct param_struct  { 
  unsigned long page_size;     /* 0:  Size of the page  */ 
  unsigned long nr_pages;      /* 4:  Number of pages in the system */ 
  unsigned long ramdisk        /* 8: ramdisk size */ 
  unsigned long rootdev;       /* 16: Number representing the root device */ 
  unsigned long initrd_start;  /* 64: starting address of initial ramdisk */
                                      /* This can be either in flash/dram */ 
  unsigned long initrd_size;   /* 68: size of initial ramdisk */ 
 }


 

请注意:这些数表示定义字段的参数结构中的偏移量。这意味着如果引导装载程序将参数结构放置在地址 0xc0000100,那么 rootdev 参数将放置在 0xc0000100 + 16,initrd_start 将放置在 0xc0000100 + 64 等等 — 否则,内核将在解释正确的参数时遇到困难。

正如上面提到的,因为从引导装载程序到内核的参数传递会有一些约束条件,所以大多数 2.4.x 系列内核期望参数以已标记的列表格式传递。在已标记的列表中,每个标记由标识被传递参数的 tag_header 以及其后的参数值组成。标记列表中标记的常规格式可以如下所示:

清单 4. 样本标记格式。内核通过 <ATAG_TAGNAME>; 头来标识每个标记。 #define <aTAG_TAGNAME>;  <Some Magic number>; 

 struct <tag_tagname>; { 
         u32 <tag_param>;; 
         u32 <tag_param>;; 
 }; 

 /* Example tag for passing memory information */ 

 #define ATAG_MEM        0x54410002  /* Magic number */ 

 struct tag_mem32 { 
         u32     size;               /* size of memory */ 
         u32     start;              /* physical start address of memory*/ 
 }; 


 

setup_arch 还需要对闪存存储库、系统寄存器和其它特定设备执行内存映射。一旦完成了特定于体系结构的设置,控制就返回到初始化系统其余部分的 start_kernel 函数。这些附加的初始化任务包含:

设置陷阱 
初始化中断 
初始化计时器 
初始化控制台 
调用 mem_init,它计算各种区域、高内存区等内的页面数量 
初始化 slab 分配器并为 VFS、缓冲区高速缓存等创建 slab 高速缓存 
建立各种文件系统,如 proc、ext2 和 JFFS2 
创建 kernel_thread,它执行文件系统中的 init 命令并显示 lign 提示符。 如果在 /bin、/sbin 或 /etc 中没有 init 程序,那么内核将执行文件系统的 /bin 中的 shell。



设备驱动程序
嵌入式系统通常有许多设备用于与用户交互,象触摸屏、小键盘、滚动轮、传感器、RA232 接口、LCD 等等。除了这些设备外,还有许多其它专用设备,包括闪存、USB、GSM 等。内核通过所有这些设备各自的设备驱动程序来控制它们,包括 GUI 用户应用程序也通过访问这些驱动程序来访问设备。本节着重讨论通常几乎在每个嵌入式环境中都会使用的一些重要设备的设备驱动程序。

帧缓冲区驱动程序
这是最重要的驱动程序之一,因为通过这个驱动程序才能使系统屏幕显示内容。帧缓冲区驱动程序通常有三层。最底层是基本控制台驱动程序 drivers/char/console.c,它提供了文本控制台常规接口的一部分。通过使用控制台驱动程序函数,我们能将文本打印到屏幕上 — 但图形或动画还不能(这样做需要使用视频模式功能,通常出现在中间层,也就是 drivers/video/fbcon.c 中)。这个第二层驱动程序提供了视频模式中绘图的常规接口。

帧缓冲区是显卡上的内存,需要将它内存映射到用户空间以便可以将图形和文本能写到这个内存段上:然后这个信息将反映到屏幕上。帧缓冲区支持提高了绘图的速度和整体性能。这也是顶层驱动程序引人注意之处:顶层是非常特定于硬件的驱动程序,它需要支持显卡不同的硬件方面 — 象启用/禁用显卡控制器、深度和模式的支持以及调色板等。所有这三层都相互依赖以实现正确的视频功能。与帧缓冲区有关的设备是 /dev/fb0(主设备号 29,次设备号 0)。

输入设备驱动程序
可触摸板是用于嵌入式设备的最基本的用户交互设备之一 — 小键盘、传感器和滚动轮也包含在许多不同设备中以用于不同的用途。

触摸板设备的主要功能是随时报告用户的触摸,并标识触摸的坐标。这通常在每次发生触摸时,通过生成一个中断来实现。

然后,这个设备驱动程序的角色是每当出现中断时就查询触摸屏控制器,并请求控制器发送触摸的坐标。一旦驱动程序接收到坐标,它就将有关触摸和任何可用数据的信号发送给用户应用程序,并将数据发送给应用程序(如果可能的话)。然后用户应用程序根据它的需要处理数据。

几乎所有输入设备 — 包括小键盘 — 都以类似原理工作。

闪存 MTD 驱动程序
MTD 设备是象闪存芯片、小型闪存卡、记忆棒等之类的设备,它们在嵌入式设备中的使用正在不断增长。

MTD 驱动程序是在 Linux 下专门为嵌入式环境开发的新的一类驱动程序。相对于常规块设备驱动程序,使用 MTD 驱动程序的主要优点在于 MTD 驱动程序是专门为基于闪存的设备所设计的,所以它们通常有更好的支持、更好的管理和基于扇区的擦除和读写操作的更好的接口。Linux 下的 MTD 驱动程序接口被划分为两类模块:用户模块和硬件模块。

用户模块
这些模块提供从用户空间直接使用的接口:原始字符访问、原始块访问、FTL(闪存转换层,Flash Transition Layer — 用在闪存上的一种文件系统)和 JFS(即日志文件系统,Journaled File System — 在闪存上直接提供文件系统而不是模拟块设备)。用于闪存的 JFS 的当前版本是 JFFS2(稍后将在本文中描述)。

硬件模块
这些模块提供对内存设备的物理访问,但并不直接使用它们。通过上述的用户模块来访问它们。这些模块提供了在闪存上读、擦除和写操作的实际例程。

MTD 驱动程序设置
为了访问特定的闪存设备并将文件系统置于其上,需要将 MTD 子系统编译到内核中。这包括选择适当的 MTD 硬件和用户模块。当前,MTD 子系统支持为数众多的闪存设备 — 并且有越来越多的驱动程序正被添加进来以用于不同的闪存芯片。

有两个流行的用户模块可启用对闪存的访问:MTD_CHAR 和 MTD_BLOCK。

MTD_CHAR 提供对闪存的原始字符访问,而 MTD_BLOCK 将闪存设计为可以在上面创建文件系统的常规块设备(象 IDE 磁盘)。与 MTD_CHAR 关联的设备是 /dev/mtd0、mtd1、mtd2(等等),而与 MTD_BLOCK 关联的设备是 /dev/mtdblock0、mtdblock1(等等)。由于 MTD_BLOCK 设备提供象块设备那样的模拟,通常更可取的是在这个模拟基础上创建象 FTL 和 JFFS2 那样的文件系统。

为了进行这个操作,可能需要创建分区表将闪存设备分拆到引导装载程序节、内核节和文件系统节中。样本分区表可能包含以下信息:

清单 5. MTD 的简单闪存设备分区 struct mtd_partition sample_partition = { 
      { 
                                           /* First partition */ 
            name : bootloader,             /* Bootloader section */ 
            size    : 0x00010000,          /* Size  */ 
            offset  : 0,          /* Offset from start of flash- location 0x0*/  
            mask_flags : MTD_WRITEABLE     /* This partition is not writable */ 
      },  
      {                                    /* Second partition */ 
            name : Kernel,                 /* Kernel section */ 
            size    :  0x00100000,         /* Size */ 
            offset : MTDPART_OFS_APPEND,   /* Append after bootloader section */ 
            mask_flags : MTD_WRITEABLE     /* This partition is not writable */ 
      },  
      {                                    /* Third partition */ 
            name : JFFS2,                  /* JFFS2 filesystem */ 
            size    :  MTDPART_SIZ_FULL,   /* Occupy rest of flash */ 
            offset :  MTDPART_OFS_APPEND   /* Append after kernel section */ 
      }
 }


 

上面的分区表使用了 MTD_BLOCK 接口对闪存设备进行分区。这些分区的设备节点是:

简单闪存分区的设备节点  User      device node         Major number    Minor number

  Bootloader    /dev/mtdblock0          31              0 
  Kernel        /dev/mtdblock1          31              1 
  Filesystem    /dev/mtdblock2          31              2 


 

在本例中,引导装载程序必须将有关 root 设备节点(/dev/mtdblock2)和可以在闪存中找到文件系统的地址(本例中是 FLASH_BASE_ADDRESS + 0x04000000)的正确参数传递到内核。一旦完成分区,闪存设备就准备装入或挂装文件系统。

Linux 中 MTD 子系统的主要目标是在系统的硬件驱动程序和上层,或用户模块之间提供通用接口。硬件驱动程序不需要知道象 JFFS2 和 FTL 那样的用户模块使用的方法。所有它们真正需要提供的就是一组对底层闪存系统进行 read、 write 和 erase 操作的简单例程。

嵌入式设备的文件系统
系统需要一种以结构化格式存储和检索信息的方法;这就需要文件系统的参与。Ramdisk(请参阅参考资料)是通过将计算机的 RAM 用作设备来创建和挂装文件系统的一种机制,它通常用于无盘系统(当然包括微型嵌入式设备,它只包含作为永久存储媒质的闪存芯片)。

用户可以根据可靠性、健壮性和/或增强的功能的需求来选择文件系统的类型。下一节将讨论几个可用选项及其优缺点。

第二版扩展文件系统(Ext2fs)
Ext2fs 是 Linux 事实上的标准文件系统,它已经取代了它的前任 — 扩展文件系统(或 Extfs)。Extfs 支持的文件大小最大为 2 GB,支持的最大文件名称大小为 255 个字符 — 而且它不支持索引节点(包括数据修改时间标记)。Ext2fs 做得更好;它的优点是:

Ext2fs 支持达 4 TB 的内存。 
Ext2fs 文件名称最长可以到 1012 个字符。 
当创建文件系统时,管理员可以选择逻辑块的大小(通常大小可选择 1024、2048 和 4096 字节)。 
Ext2fs 了实现快速符号链接:不需要为此目的而分配数据块,并且将目标名称直接存储在索引节点(inode)表中。这使性能有所提高,特别是在速度上。



因为 Ext2 文件系统的稳定性、可靠性和健壮性,所以几乎在所有基于 Linux 的系统(包括台式机、服务器和工作站 — 并且甚至一些嵌入式设备)上都使用 Ext2 文件系统。然而,当在嵌入式设备中使用 Ext2fs 时,它有一些缺点:

Ext2fs 是为象 IDE 设备那样的块设备设计的,这些设备的逻辑块大小是 512 字节,1 K 字节等这样的倍数。这不太适合于扇区大小因设备不同而不同的闪存设备。 
Ext2 文件系统没有提供对基于扇区的擦除/写操作的良好管理。在 Ext2fs 中,为了在一个扇区中擦除单个字节,必须将整个扇区复制到 RAM,然后擦除,然后重写入。考虑到闪存设备具有有限的擦除寿命(大约能进行 100,000 次擦除),在此之后就不能使用它们,所以这不是一个特别好的方法。 
在出现电源故障时,Ext2fs 不是防崩溃的。 
Ext2 文件系统不支持损耗平衡,因此缩短了扇区/闪存的寿命。(损耗平衡确保将地址范围的不同区域轮流用于写和/或擦除操作以延长闪存设备的寿命。) 
Ext2fs 没有特别完美的扇区管理,这使设计块驱动程序十分困难。



由于这些原因,通常相对于 Ext2fs,在嵌入式环境中使用 MTD/JFFS2 组合是更好的选择。

用 Ramdisk 挂装 Ext2fs 
通过使用 Ramdisk 的概念,可以在嵌入式设备中创建并挂装 Ext2 文件系统(以及用于这一目的的任何文件系统)。

清单 6. 创建一个简单的基于 Ext2fs 的 Ramdisk  mke2fs -vm0 /dev/ram 4096
  mount -t ext2 /dev/ram /mnt
  cd /mnt
  cp /bin, /sbin, /etc, /dev ... files in mnt
  cd ../
  umount /mnt
  dd if=/dev/ram bs=1k count=4096 of=ext2ramdisk


 

mke2fs 是用于在任何设备上创建 ext2 文件系统的实用程序 — 它创建超级块、索引节点以及索引节点表等等。

在上面的用法中,/dev/ram 是上面构建有 4096 个块的 ext2 文件系统的设备。然后,将这个设备(/dev/ram)挂装在名为 /mnt 的临时目录上并且复制所有必需的文件。一旦复制完这些文件,就卸装这个文件系统并且设备(/dev/ram)的内容被转储到一个文件(ext2ramdisk)中,它就是所需的 Ramdisk(Ext2 文件系统)。

上面的顺序创建了一个 4 MB 的 Ramdisk,并用必需的文件实用程序来填充它。

一些要包含在 Ramdisk 中的重要目录是:

/bin — 保存大多数象 init、busybox、shell、文件管理实用程序等二进制文件。 
/dev — 包含用在设备中的所有设备节点 
/etc — 包含系统的所有配置文件 
/lib — 包含所有必需的库,如 libc、libdl 等



日志闪存文件系统,版本 2(JFFS2)
瑞典的 Axis Communications 开发了最初的 JFFS,Red Hat 的 David Woodhouse 对它进行了改进。 第二个版本,JFFS2,作为用于微型嵌入式设备的原始闪存芯片的实际文件系统而出现。JFFS2 文件系统是日志结构化的,这意味着它基本上是一长列节点。每个节点包含有关文件的部分信息 — 可能是文件的名称、也许是一些数据。相对于 Ext2fs,JFFS2 因为有以下这些优点而在无盘嵌入式设备中越来越受欢迎:

JFFS2 在扇区级别上执行闪存擦除/写/读操作要比 Ext2 文件系统好。 
JFFS2 提供了比 Ext2fs 更好的崩溃/掉电安全保护。当需要更改少量数据时,Ext2 文件系统将整个扇区复制到内存(DRAM)中,在内存中合并新数据,并写回整个扇区。这意味着为了更改单个字,必须对整个扇区(64 KB)执行读/擦除/写例程 — 这样做的效率非常低。要是运气差,当正在 DRAM 中合并数据时,发生了电源故障或其它事故,那么将丢失整个数据集合,因为在将数据读入 DRAM 后就擦除了闪存扇区。JFFS2 附加文件而不是重写整个扇区,并且具有崩溃/掉电安全保护这一功能。 
这可能是最重要的一点:JFFS2 是专门为象闪存芯片那样的嵌入式设备创建的,所以它的整个设计提供了更好的闪存管理。



因为本文主要是写关于闪存设备的使用,所以在嵌入式环境中使用 JFFS2 的缺点很少:

当文件系统已满或接近满时,JFFS2 会大大放慢运行速度。这是因为垃圾收集的问题(更多信息,请参阅参考资料)。



创建 JFFS2 文件系统
在 Linux 下,用 mkfs.jffs2 命令创建 JFFS2 文件系统(基本上是使用 JFFS2 的 Ramdisk)。

清单 7. 创建 JFFS2 文件系统 mkdir jffsfile 
 cd jffsfile 

 /* copy all the /bin, /etc, /usr/bin, /sbin/ binaries and /dev entries 
that are needed for the filesystem here */ 

 /* Type the following command under jffsfile directory to create the JFFS2 Image */ 

 ./mkfs.jffs2 -e 0x40000 -p -o ../jffs.image 


 

上面显示了 mkfs.jffs2 的典型用法。-e 选项确定闪存的擦除扇区大小(通常是 64 千字节)。-p 选项用来在映像的剩余空间用零填充。-o 选项用于输出文件,通常是 JFFS2 文件系统映像 — 在本例中是 jffs.image。一旦创建了 JFFS2 文件系统,它就被装入闪存中适当的位置(引导装载程序告知内核查找文件系统的地址)以便内核能挂装它。

tmpfs
当 Linux 运行于嵌入式设备上时,该设备就成为功能齐全的单元,许多守护进程会在后台运行并生成许多日志消息。另外,所有内核日志记录机制,象 syslogd、dmesg 和 klogd,会在 /var 和 /tmp 目录下生成许多消息。由于这些进程产生了大量数据,所以允许将所有这些写操作都发生在闪存是不可取的。由于在重新引导时这些消息不需要持久存储,所以这个问题的解决方案是使用 tmpfs。

tmpfs 是基于内存的文件系统,它主要用于减少对系统的不必要的闪存写操作这一唯一目的。因为 tmpfs 驻留在 RAM 中,所以写/读/擦除的操作发生在 RAM 中而不是在闪存中。因此,日志消息写入 RAM 而不是闪存中,在重新引导时不会保留它们。tmpfs 还使用磁盘交换空间来存储,并且当为存储文件而请求页面时,使用虚拟内存(VM)子系统。

tmpfs 的优点包括:

动态文件系统大小 — 文件系统大小可以根据被复制、创建或删除的文件或目录的数量来缩放。使得能够最理想地使用内存。 
速度 — 因为 tmpfs 驻留在 RAM,所以读和写几乎都是瞬时的。即使以交换的形式存储文件,I/O 操作的速度仍非常快。



tmpfs 的一个缺点是当系统重新引导时会丢失所有数据。因此,重要的数据不能存储在 tmpfs 上。

挂装 tmpfs
诸如 Ext2fs 和 JFFS2 等大多数其它文件系统都驻留在底层块设备之上,而 tmpfs 与它们不同,它直接位于 VM 上。因而,挂装 tmpfs 文件系统是很简单的事:

清单 8. 挂装 tmpfs /* Entries in /etc/rc.d/rc.sysinit for creating/using tmpfs */ 

 # mount -t tmpfs tmpfs /var -o size=512k 
 # mkdir -p /var/tmp 
 # mkdir -p /var/log 
 # ln -s /var/tmp /tmp 


 

上面的命令将在 /var 上创建 tmpfs 并将 tmpfs 的最大大小限制为 512 K。同时,tmp/ 和 log/ 目录成为 tmpfs 的一部分以便在 RAM 中存储日志消息。

如果您想将 tmpfs 的一个项添加到 /etc/fstab,那么它可能看起来象这样:

tmpfs /var tmpfs size=32m 0 0

这将在 /var 上挂装一个新的 tmpfs 文件系统。

图形用户界面(GUI)选项
从用户的观点来看,图形用户界面(GUI)是系统的一个最至关重要的方面:用户通过 GUI 与系统进行交互。所以 GUI 应该易于使用并且非常可靠。但它还需要是有内存意识的,以便在内存受限的、微型嵌入式设备上可以无缝执行。所以,它应该是轻量级的,并且能够快速装入。

另一个要考虑的重要方面涉及许可证问题。一些 GUI 分发版具有允许免费使用的许可证,甚至在一些商业产品中也是如此。另一些许可证要求如果想将 GUI 合并入项目中则要支付版税。

最后,大多数开发人员可能会选择 XFree86,因为 XFree86 为他们提供了一个能使用他们喜欢的工具的熟悉环境。但是市场上较新的 GUI,象 Century Software 的 Microwindows(Nano-X)和 Trolltech 的 QT/Embedded,与 X 在嵌入式 Linux 的竞技舞台中展开了激烈竞争,这主要是因为它们占用很少的资源、执行的速度很快并且具有定制窗口构件的支持。

让我们看一看这些选项中的每一个。

Xfree86 4.X(带帧缓冲区支持的 X11R6.4)
XFree86 Project, Inc. 是一家生产 XFree86 的公司,该产品是一个可以免费重复分发、开放源码的 X Window 系统。X Window 系统(X11)为应用程序以图形方式进行显示提供了资源,并且它是 UNIX 和类 UNIX 的机器上最常用的窗口系统。它很小但很有效,它运行在为数众多的硬件上,它对网络透明并且有良好的文档说明。X11 为窗口管理、事件处理、同步和客户机间通信提供强大的功能 — 并且大多数开发人员已经熟悉了它的 API。它具有对内核帧缓冲区的内置支持,并占用非常少的资源 — 这非常有助于内存相对较少的设备。X 服务器支持 VGA 和非 VGA 图形卡,它对颜色深度 1、2、4、8、16 和 32 提供支持,并对渲染提供内置支持。最新的发行版是 XFree86 4.1.0。

它的优点包括:

帧缓冲区体系结构的使用提高了性能。 
占用的资源相对很小 — 大小在 600 K 到 700 K 字节的范围内,这使它很容易在小型设备上运行。 
非常好的支持:在线有许多文档可用,还有许多专用于 XFree86 开发的邮递列表。 
X API 非常适合扩展。



它的缺点包括:

比最近出现的嵌入式 GUI 工具性能差。 
此外,当与 GUI 中最新的开发 — 象专门为嵌入式环境设计的 Nano-X 或 QT/Embedded — 相比时,XFree86 似乎需要更多的内存。



Microwindows
Microwindows 是 Century Software 的开放源代码项目,设计用于带小型显示单元的微型设备。它有许多针对现代图形视窗环境的功能部件。象 X 一样,有多种平台支持 Microwindows。

Microwindows 体系结构是基于客户机/服务器的并且具有分层设计。最底层是屏幕和输入设备驱动程序(关于键盘或鼠标)来与实际硬件交互。在中间层,可移植的图形引擎提供对线的绘制、区域的填充、多边形、裁剪以及颜色模型的支持。

在最上层,Microwindows 支持两种 API:Win32/WinCE API 实现,称为 Microwindows;另一种 API 与 GDK 非常相似,它称为 Nano-X。Nano-X 用在 Linux 上。它是象 X 的 API,用于占用资源少的应用程序。

Microwindows 支持 1、2、4 和 8 bpp(每像素的位数)的 palletized 显示,以及 8、16、24 和 32 bpp 的真彩色显示。Microwindows 还支持使它速度更快的帧缓冲区。Nano-X 服务器占用的资源大约在 100 K 到 150 K 字节。

原始 Nano-X 应用程序的平均大小在 30 K 到 60 K。由于 Nano-X 是为有内存限制的低端设备设计的,所以它不象 X 那样支持很多函数,因此它实际上不能作为微型 X(Xfree86 4.1)的替代品。

可以在 Microwindows 上运行 FLNX,它是针对 Nano-X 而不是 X 进行修改的 FLTK(快速轻巧工具箱(Fast Light Toolkit))应用程序开发环境的一个版本。本文中描述 FLTK。

Nano-X 的优点包括:

与 Xlib 实现不同,Nano-X 仍在每个客户机上同步运行,这意味着一旦发送了客户机请求包,服务器在为另一个客户机提供服务之前一直等待,直到整个包都到达为止。这使服务器代码非常简单,而运行的速度仍非常快。 
占用很小的资源



Nano-X 的缺点包括:

联网功能部件至今没有经过适当地调整(特别是网络透明性)。 
还没有太多现成的应用程序可用。 
与 X 相比,Nano-X 虽然近来正在加速开发,但仍没有那么多文档说明而且没有很好的支持,但这种情形会有所改变。



Microwindows 上的 FLTK API
FLTK 是一个简单但灵活的 GUI 工具箱,它在 Linux 世界中赢得越来越多的关注,它特别适用于占用资源很少的环境。它提供了您期望从 GUI 工具箱中获得的大多数窗口构件,如按钮、对话框、文本框以及出色的“赋值器”选择(用于输入数值的窗口构件)。还包括滑动器、滚动条、刻度盘和其它一些构件。

针对 Microwindows GUI 引擎的 FLTK 的 Linux 版本被称为 FLNX。FLNX 由两个组件构成:Fl_Widget 和 FLUID。Fl_Widget 由所有基本窗口构件 API 组成。FLUID(快速轻巧的用户界面设计器(Fast Light User Interface Designer, FLUID))是用来产生 FLTK 源代码的图形编辑器。总的来说,FLNX 是能用来为嵌入式环境创建应用程序的一个出色的 UI 构建器。

Fl_Widget 占用的资源大约是 40 K 到 48 K,而 FLUID(包括了每个窗口构件)大约占用 380 K。这些非常小的资源占用率使 Fl_Widget 和 FLUID 在嵌入式开发世界中非常受欢迎。

优点包括:

习惯于在象 Windows 这样已建立得较好的环境中开发基于 GUI 的应用程序的任何人都会非常容易地适应 FLTK 环境。 
它的文档包括一本十分完整且编写良好的手册。 
它使用 LGPL 进行分发,所以开发人员可以灵活地发放他们应用程序的许可证。 
FLTK 是一个 C++ 库(Perl 和 Python 绑定也可用)。面向对象模型的选择是一个好的选择,因为大多数现代 GUI 环境都是面向对象的;这也使将编写的应用程序移植到类似的 API 中变得更容易。 
Century Software 的环境提供了几个有用的工具,诸如 ScreenToP 和 ViewML 浏览器。



它的缺点是:

普通的 FLTK 可以与 X 和 Windows API 一同工作,而 FLNX 不能。它与 X 的不兼容性阻碍了它在许多项目中的使用。



Qt/Embedded
Qt/Embedded 是 Trolltech 新开发的用于嵌入式 Linux 的图形用户界面系统。Trolltech 最初创建 Qt 作为跨平台的开发工具用于 Linux 台式机。它支持各种有 UNIX 特点的系统以及 Microsoft Windows。KDE — 最流行的 Linux 桌面环境之一,就是用 Qt 编写的。

Qt/Embedded 以原始 Qt 为基础,并做了许多出色的调整以适用于嵌入式环境。Qt Embedded 通过 Qt API 与 Linux I/O 设施直接交互。那些熟悉并已适应了面向对象编程的人员将发现它是一个理想环境。而且,面向对象的体系结构使代码结构化、可重用并且运行快速。与其它 GUI 相比,Qt GUI 非常快,并且它没有分层,这使得 Qt/Embedded 成为用于运行基于 Qt 的程序的最紧凑环境。

Trolltech 还推出了 Qt 掌上机环境(Qt Palmtop Environment,俗称 Qpe)。Qpe 提供了一个基本桌面窗口,并且该环境为开发提供了一个易于使用的界面。Qpe 包含全套的个人信息管理(Personal Information Management (PIM))应用程序、因特网客户机、实用程序等等。然而,为了将 Qt/Embedded 或 Qpe 集成到一个产品中,需要从 Trolltech 获得商业许可证。(原始 Qt 自版本 2.2 以后就可以根据 GPL 获得 。)

它的优点包括:

面向对象的体系结构有助于更快地执行 
占用很少的资源,大约 800 K 
抗锯齿文本和混合视频的象素映射



它的缺点是:

Qt/Embedded 和 Qpe 只能在获得商业许可证的情况下才能使用。



结束语
嵌入式 Linux 开发正迅速地发展着。您必须学习并从引导装载程序和分发版到文件系统和 GUI 中的每一个事物的各种选项中作出选择。但是要感谢有这种选择自由度以及非常活跃的 Linux 社区,Linux 上的嵌入式开发已经达到了新的境界,并且调整模块以适合您的规范从未比现在更简单。这已经导致出现了许多时新的手持和微型设备作为开放盒,这是件好事 — 因为事实是您不必成为一个专家从这些模块中进行选择来调整您的设备以满足您自己的要求和需要。

我们希望这篇对嵌入式 Linux 领域的介绍性概述能激起您进行试验的欲望,并且希望您将体会摆弄微型设备的乐趣以满足您的爱好。为进一步有助于您的项目,请参阅下面的“参考资料”,链接到有关我们这里已经概述的技术的更深入的信息。



 sw_yp 回复于:2003-01-17 15:11:12

一份非常内行的Linux LVM HOWTO 
蓝森林 http://www.lslnet.com 2000年12月29日 17:43


作 者: 谢启发


1. 绪论 
欢迎你,亲爱的读者。 

写这个文档的目的是为了告诉你什么是LVM,它怎样工作,你怎样运用它使你的生活变得更容易。虽然有一份LVM FAQ,但仍是德文的,它是从不同的角度来描写的。它是一份“真的”HOWTO,在传授理解(有希望的)的时候也是非常内行的。 

我要说清楚我不是一个Linux逻辑卷管理器(Logical Volume Manager)的作者。我向那些作者表示敬意,同时我希望能和他们合作。 

不可思议的是我甚至不知道LVM的开发者。我希望这种情况不久会改变。我事先向他们表示道歉。 

1.1 免责声明 &amp; 许可 
分发这个文档是希望它对你有用,但是不提供任何担保,也没有销售或适应特殊目的的隐含担保。 

如果你的磁盘融化了,你公司解雇了你--这决不是我们的错。对不起。请记得经常做备份,在没有重要数据的系统上做实验。 

此外,Richard Allen不代表他老板说话。 

Linux是Linus Torvalds的注册商标。 

英文原文(若翻译有误,以原文为准) 

This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. 

If your disks melt and your company fires you - its never our fault. Sorry. Make frequent backups and do your experiments on non-mission critical systems. 

Furthermore, Richard Allen does not speak for his employer. 

Linux is a registered trademark of Linus Torvalds. 

1.2 预备知识 
不是太多。如果你曾经安装过Linux和创建过文件系统(fdisk/mkfs),那你就准备就绪了。但因为总是以root身份操作,所以一定要小心谨慎!错误的命令或操作设备文件都可能损坏已经存在的数据。 

如果你知道怎样配置HP/UX LVM,那你几乎都完成了,Linux工作得很象HP上的处理。 

1.3 注意事项 
关于这份文档有几点需要注释。虽然我写了大部分,但我真的不希望它停步。我坚决相信Open Source,我鼓励你反馈、更新、打补丁等等。不要不愿意告诉我们有关排版或普通的老错误。 

如果你感觉你更有资格来维护一部分,或者你认为你能创作和维护一个新的部分,欢迎你。这个HOWTO的SGML格式是通过CVS可用的。我预想这会是个合作计划。 

这份文档里,你会发现许多FIXME的通知。补丁总是欢迎的!无论你在哪里发现FIXME,你都要明白你正踩在未知的领域。这不是说其他地方没有错误,而是说这里是要特别注意的地方。如果你已经验证了什么,请告诉我,我好删除这FIXME通知。 

1.4 访问,CVS &amp; 更新 
这份HOWTO的规范定位在 这里。 

我们现在有匿名的CVS访问,对全世界普遍有效。这使你更容易获得最新版的HOWTO,并提供改变和增强。 

如果你想通过CVS获得这份HOWTO,下面教你怎样做: 

$ export CVSROOT=:pserver:anon@outpost.ds9a.nl:/var/cvsroot 
$ cvs login 
CVS password: [enter cvs (without s)] 
$ cvs co lvm-howto 
cvs server: Updating lvm-howto 
U lvm-howto/lvm-howto.sgml 


如果你发现错误,或者想增加什么,本地修复它,并运行“cvs diff -u”,同时将结果发给我们。 

提供了一个Makefile文件来帮助你创建postscript,dvi,pdf,html 和 plain text格式。你可能需要安装sgml-tools,ghostscript 和 tetex 以获得所有格式。 

1.5 这份文档的编排 
我们将首先解释一些需要的基本知识。我们尽量设法包括例子来帮助理解。 


2. 什么是LVM? 
传统上,一个分区大小是静态的。这要求一个系统安装人员必须考虑的不是“我要在这个分区上存储多少数据”,而是“我‘究竟’要在这个分区上存储多少数据”。当一个用户在这个分区上没有空间了,他要么不得不重新分区(这可能要求整个操作系统重装),要么象符号连接一样使用组装机。 

一个分区就是物理磁盘上一系列连续数据块的概念已经演变了。多数类Unix系统现在有能力分解物理磁盘到许多单元。多个驱动器上的存储单元可以汇聚成一个“逻辑卷”,它们可以分配给分区。另外,单元可以随着空间要求的改变而从分区中添加和删除。 

这就是基本的逻辑卷管理器(LVM) 

例如,假设你有一个1GB的磁盘,并且创建“/home”分区花了600MB。设想你没有空间了,于是决定“/home”需要1GB。用传统的分区观念,你不得不有另外一个至少1GB大小的驱动器。接着增加这个磁盘,创建新的/home,并且将现有的数据拷贝过去。 

然而,用LVM配置,你仅仅只需要增加400MB(或更大)的磁盘,并将它的存储单元添加到“/home”分区中。其他工具可以让你调整原来文件系统的大小,所以你仅仅只需要调整“/home”大小来使用更大的分区,接着返回到商务中。 

一个非常特殊的处理,LVM甚至可以做它自身的“快照”,这使你能对不可移动的目标做备份。我们返回到这个激动人心的可能中,稍后,有许多另外的真实应用。 

以下章节中,我们解释了LVM的基本要素,和它使用中的许多概要。 


3. 基本原理 
Ok,不要因为恐惧而停止,但是LVM有许多你要明白的术语,以免你危及你的文件系统。 

我们从下面开始,或多或少。 

物理介质 The physical media 
你应该感受“物理”这个单词有极大的延伸,虽然我们刚开始假设它仅仅是一个硬盘,或者一个分区。例如,/dev/hda,/dev/hda6,/dev/sda。你可以转换一个块设备上任何连续块到一个。。。 
  
物理卷 Physical Volume (PV) 
一个PV只不过是有许多管理数据添加在它里面的物理介质--一旦你添加了它,LVM就认为它是。。。的一个持有者。 
  
物理分区 Physical Extents (PE) 
物理分区真的象一些大的数据块,通常有几MB。PE可以分配给一个。。。 
  
卷组 Volume Group (VG) 
一个VG是由许多物理分区组成的(可能来自多个物理卷或硬盘)。虽然这可能容易让你认为一个VG就是由几个硬盘组成的(例如/dev/hda和/dev/sda),但是更确切的说,它包含由这些硬盘提供的许多PE。 
  
>;从这个卷组,PE可以分配给一个。。。 
  
逻辑卷 Logical Volume (LV) 
Yes,我们最终到达某处。一个逻辑卷是我们工作的最终结果,这里是我们存储信息的地方。这等同于传统分区的想法。 
象用通常的分区一样,在逻辑卷上你能代表性的创建一个。。。 
  
文件系统 Filesystem 
文件系统是你想它成为的形态:标准的 ext2,ReiserFS,NWFS,XFS,JFX,NTFS,等等。。。对Linux内核来说,在通常的分区和逻辑卷之间没有差别。 
我试着画了一个ASCII图来使这些形象化。 

一个物理卷,包含了许多物理分区: 

+-----[ Physical Volume ]------+ 
| PE | PE | PE | PE | PE | PE | 
+------------------------------+ 

一个卷组,包含了2个物理卷(PV)有6个物理分区: 

+------[ Volume Group ]-----------------+ 
| +--[PV]--------+ +--[PV]---------+ | 
| | PE | PE | PE | | PE | PE | PE | | 
| +--------------+ +---------------+ | 
+---------------------------------------+ 

我们现在做更进一步扩展: 

+------[ Volume Group ]-----------------+ 
| +--[PV]--------+ +--[PV]---------+ | 
| | PE | PE | PE | | PE | PE | PE | | 
| +--+---+---+---+ +-+----+----+---+ | 
| | | | +-----/ | | | 
| | | | | | | | 
| +-+---+---+-+ +----+----+--+ | 
| | Logical | | Logical | | 
| | Volume | | Volume | | 
| | | | | | 
| | /home | | /var | | 
| +-----------+ +------------+ | 
+---------------------------------------+ 


这个向我们展示了两个文件系统,它跨越两个磁盘。/home文件系统包含4个物理分区,/var文件系统包含2个。 

bert hubert 正在写一个工具来更真实的描述LVM,这里提供了一些它在屏幕上出现的外观。看起来比ASCII图画要好。 

3.1 Show &amp; Tell 
Ok,这些概念很难理解(’We are LVM of Borg...),因此下面给出了创建一个逻辑卷的例子。不要粘贴这个例子到你的控制台,因为这样会破坏数据,除非碰巧你的计算机的/dev/hda3和/dev/hdb2没有使用。 

如果有疑问,查看上面的ASCII图画。 

你应该首先设置/dev/hda3和/dev/hdb2的分区类型为0x8e,它表示”Linux LVM”。请注意你的fdisk的版本可能仍不认识这种类型,因此它显示为“Unknown”: 


# fdisk /dev/hda 

Command (m for help): p 

Disk /dev/hda: 255 heads, 63 sectors, 623 cylinders 
Units = cylinders of 16065 * 512 bytes 

Device Boot Start End Blocks Id System 
/dev/hda1 1 2 16033+ 83 Linux 
/dev/hda2 3 600 4803435 83 Linux 
/dev/hda3 601 607 56227+ 83 Linux 
/dev/hda4 608 614 56227+ 83 Linux 

Command (m for help): t 
Partition number (1-4): 3 
Hex code (type L to list codes): 8e 

Command (m for help): p 

Disk /dev/hda: 255 heads, 63 sectors, 623 cylinders 
Units = cylinders of 16065 * 512 bytes 

Device Boot Start End Blocks Id System 
/dev/hda1 1 2 16033+ 83 Linux 
/dev/hda2 3 600 4803435 83 Linux 
/dev/hda3 601 607 56227+ 8e Unknown 
/dev/hda4 608 614 56227+ 83 Linux 

Command (m for help): w 

我们对/dev/hdb2做同样的操作,在此就不演示了。这是需要的,以至LVM能重建你应该丢失的配置。 

通常,不需要重启,但有些计算机却要求。因此如果下面的例子不工作,试试重启。 

接着我们创建物理卷(PV),如下: 


# pvcreate /dev/hda3 
pvcreate -- physical volume "/dev/hda3" successfully created 
# pvcreate /dev/hdb2 
pvcreate -- physical volume "/dev/hdb2" successfully created 

我们再将这两个物理卷(PV)加到一个叫做“test”的卷组(VG)中: 


# vgcreate test /dev/hdb2 /dev/hda3 
vgcreate -- INFO: using default physical extent size 4 MB 
vgcreate -- INFO: maximum logical volume size is 255.99 Gigabyte 
vgcreate -- doing automatic backup of volume group "test" 
vgcreate -- volume group "test" successfully created and activated 

现在我们有一个空的卷组(VG),让我们来检查一下: 


# vgdisplay -v test 
--- Volume group --- 
VG Name test 
VG Access read/write 
VG Status available/resizable 
VG # 0 
MAX LV 256 
Cur LV 0 
Open LV 0 
MAX LV Size 255.99 GB 
Max PV 256 
Cur PV 2 
Act PV 2 
VG Size 184 MB 
PE Size 4 MB 
Total PE 46 
Alloc PE / Size 0 / 0 
Free PE / Size 46 / 184 MB 

--- No logical volumes defined in test --- 


--- Physical volumes --- 
PV Name (#) /dev/hda3 (2) 
PV Status available / allocatable 
Total PE / Free PE 13 / 13 

PV Name (#) /dev/hdb2 (1) 
PV Status available / allocatable 
Total PE / Free PE 33 / 33 

这里的许多数据--大多数现在都容易理解了。我们看到没有逻辑卷(LV)定义,因此我们要补上它。我们将在“test”卷组(PV)中创建一个50MB的逻辑卷,叫做“HOWTO”: 


# lvcreate -L 50M -n HOWTO test 
lvcreate -- rounding up size to physical extent boundary "52 MB" 
lvcreate -- doing automatic backup of "test" 
lvcreate -- logical volume "/dev/test/HOWTO" successfully created 

Ok,到这里,我们创建一个文件系统: 


# mke2fs /dev/test/HOWTO 
mke2fs 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/08/09 
Filesystem label= 
OS type: Linux 
Block size=1024 (log=0) 
Fragment size=1024 (log=0) 
13328 inodes, 53248 blocks 
2662 blocks (5.00%) reserved for the super user 
First data block=1 
7 block groups 
8192 blocks per group, 8192 fragments per group 
1904 inodes per group 
Superblock backups stored on blocks: 
8193, 24577, 40961 

Writing inode tables: done 
Writing superblocks and filesystem accounting information: done 
# mount /dev/test/HOWTO /mnt 
# ls /mnt 
lost+found 

我们做完了!让我们回顾我们的卷组(VG),它现在充满了一些东西: 


# vgdisplay test -v 
--- Volume group --- 
VG Name test 
VG Access read/write 
VG Status available/resizable 
VG # 0 
MAX LV 256 
Cur LV 1 
Open LV 1 
MAX LV Size 255.99 GB 
Max PV 256 
Cur PV 2 
Act PV 2 
VG Size 184 MB 
PE Size 4 MB 
Total PE 46 
Alloc PE / Size 13 / 52 MB 
Free PE / Size 33 / 132 MB 

--- Logical volume --- 
LV Name /dev/test/HOWTO 
VG Name test 
LV Write Access read/write 
LV Status available 
LV # 1 
# open 1 
LV Size 52 MB 
Current LE 13 
Allocated LE 13 
Allocation next free 
Read ahead sectors 120 
Block device 58:0 


--- Physical volumes --- 
PV Name (#) /dev/hda3 (2) 
PV Status available / allocatable 
Total PE / Free PE 13 / 13 

PV Name (#) /dev/hdb2 (1) 
PV Status available / allocatable 
Total PE / Free PE 33 / 20 

好,这就是了。/dev/hda3完全没用,而/dev/hdb2有13个物理分区(PE)在用。 

3.2 激活和非激活:内核空间和用户空间 
和使用所有操作系统一样,Linux划分了两个部分:内核空间(kernel space)和用户空间(user space)。用户空间有时叫做用户区(userland),这也是关于这个主题的一个很好的名字。 

关于逻辑卷管理器的创建和修改都是在用户空间做的,然后传给内核。一旦卷组或逻辑卷向内核汇报,它就叫做“激活(Active)”。当它被激活时,只有某些更改可以执行,其他的更改只有在它非激活时执行。 


4. 首要条件 
LVM在很大范围内的内核中都有效。在Linux 2.4,LVM将全部被集成。内核2.3.47和以前的,LVM要经过处理来合并到主内核中。 

4.1 内核 
Linux 2.4 
包含了你需要的所有内容。希望大多数的发行版都将LVM当成模块集成来发行。如果你需要编译,仅仅是当你选择块设备时打勾LVM选项。 

Linux 2.3.99.* 
一旦内核向前发展稳定了,这部分就不会存在了。但是现在,我们还是要描述一下。 

当我们写这篇文档时,Linux最新的内核版本是2.3.99pre5,它仍然需要一些小的补丁才能使LVM工作。 

对于Linux 2.3.99pre3,有两个补丁发行: 

一个补丁是张贴在linux-kernel,在这里可以找到。 

Andrea Arcangeli改进了这个补丁,提供了一个增量的补丁,它应用于2.3.99pre3 LVM补丁和这之上。 

对于Linux 2.3.99pre5,bert hubert将这两个补丁合并成一个了,并且主要针对2.3.99pre5。在这里可以找到这个补丁。使用它要小心。 

2.3.99pre6-1,是的,是补丁的一个预览版,特色是第一次完成了LVM的支持!它仍然遗漏了Andreas的补丁,但我们确信它不久真的会发行的。 

2.3.99pre4-ac1缺省有一个小的补丁在,并且能工作。虽然它不包括Andreas的补丁。 

Linux 2.2 
FIXME: write this 

Linux 2.3 
FIXME: write this 

4.2 用户余地 
你需要从LVM站点下载有效的工具。用glibc2.1编译系统要求的一些补丁。即使这样,在Debian 2.2上仍会出错。 

5. 增长文件系统 
你可以用一个预备好的脚本做大量的工作,也可以根据你的需要手工做 

5.1 使用e2fsadm 
如果在你的卷组中有剩余空间,并且你使用的是ext2文件系统(大多数人都是这样的),你就可以使用这个便捷的工具。 

e2fsadm命令利用商业的resize2fs工具。虽然人们都感觉resize2fs是一个很好的软件,但是它并没有被广泛的安装。 

如果你想使用FSF的ext2resize命令,你需要告诉e2fsadm以下内容: 


# export E2FSADM_RESIZE_CMD=ext2resize 
# export E2FSADM_RESIZE_OPTS="" 

余下的就简单了,e2fsadm使用时很象其他的LVM命令: 


# e2fsadm /dev/test/HOWTO -L+50M 
e2fsadm -- correcting size 102 MB to physical extent boundary 104 MB 
e2fsck 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/08/09 
Pass 1: Checking inodes, blocks, and sizes 
Pass 2: Checking directory structure 
Pass 3: Checking directory connectivity 
Pass 4: Checking reference counts 
Pass 5: Checking group summary information 
/dev/test/HOWTO: 11/25688 files (0.0% non-contiguous), 3263/102400 blocks 
lvextend -- extending logical volume "/dev/test/howto" to 104 MB 
lvextend -- doing automatic backup of volume group "test" 
lvextend -- logical volume "/dev/test/HOWTO" successfully extended 

ext2_resize_fs 
ext2_grow_fs 
ext2_block_relocate 
ext2_block_relocate_grow 
ext2_grow_group 
ext2_add_group 
ext2_add_group 
ext2_add_group 
ext2_add_group 
ext2_add_group 
ext2_add_group 
direct hits 4096 indirect hits 0 misses 1 
e2fsadm -- ext2fs in logical volume "/dev/test/HOWTO" successfully extended to 104 MB 

5.2 增长逻辑卷 
e2fsadm命令为你做了这些工作。然而,了解怎样手工来做可能会有用的。 

如果在你的卷组中有剩余空间,那么只需要一行: 


# lvextend -L+12M /dev/test/HOWTO 
lvextend -- rounding size to physical extent boundary 
lvextend -- extending logical volume "/dev/test/HOWTO" to 116 MB 
lvextend -- doing automatic backup of volume group "test" 
lvextend -- logical volume "/dev/test/HOWTO" successfully extended 

5.3 增长卷组 
这是用vgextend功能实现的,它很象馅饼一样容易。你首先需要创建一个物理卷。这要用pvcreate来实现。使用这个工具,你转换任何块设备为一个物理卷。 

这样做了之后,vgextend做余下的任务: 


# pvcreate /dev/sda1 
pvcreate -- physical volume "/dev/sda1" successfully created 
# vgextend webgroup /dev/sda1 
vgextend -- INFO: maximum logical volume size is 255.99 Gigabyte 
vgextend -- doing automatic backup of volume group "webgroup" 
vgextend -- volume group "webgroup" successfully extended 

请注意,为了要做这些,你的卷组必须是激活的。你可以通过执行象“vgchange -a y webgroup”来使它激活。 

5.4 增长文件系统 
如果你想手工做,有两条路径可以实现。 

ext2离线,使用ext2resize 
离线,就意味着你必须umount这个文件系统来做这些改变。在做这些改变的时候,这个文件系统和它上面的数据暂时不可用。如果你想扩充根分区或其他重要的分区,你必须用其他的启动介质来引导。 

ext2resize工具可以在GNU ftp站点找到,但大多数的发行版都将它作为一个包来发行。它的语法也简单易懂: 


# ext2resize /dev/HOWTO/small 40000 

这里40000是文件系统已经增长或收缩之后的块的数目。 

ext2在线 
FIXME: write this 

6. 替换磁盘 
这是LVM的好处之一。一旦你发现某个磁盘有错误,那就是要移动你的数据的时候了。使用LVM它很象馅饼一样容易。我们首先举一个明显的替换例子,你先添加一个磁盘到系统中,它至少要和你想要替换的磁盘一样大。 

要移动数据,我们移动卷组的物理分区到另一个磁盘上,或者更准确的说,到另一个物理卷上。要做这些,LVM给我们提供了pvmove功能。 

假设我们怀疑的那块磁盘叫/dev/hda1,并且我们想用/dev/sdb3来替换它。我们首先将/dev/sdb3添加到包含/dev/hda1的那个卷组中。 

在这之前,umount这个卷组上的所有文件系统看来是明智的。有一个全备份也不会损坏什么。 

FIXME: is this necessary? 

接下来我们执行pvmove。非常简单的,我们仅仅提到我们想要移走的那块磁盘,就象这样: 


# pvmove /dev/hda1 
pvmove -- moving physical extents in active volume group "test1" 
pvmove -- WARNING: moving of active logical volumes may cause data loss! 
pvmove -- do you want to continue? [y/n] y 
pvmove -- doing automatic backup of volume group "test1" 
pvmove -- 12 extents of physical volume "/dev/hda1" successfully moved 

请留意这个警告。而且看来至少有些内核或LVM的版本在使用这个命令时有问题。我是用2.3.99pre6-2来测试的,它可以工作,但要警告。 

现在,/dev/hda1没有包含任何物理分区了,我们可以将它从卷组中删除: 


# vgreduce test1 /dev/hda1 
vgreduce -- doing automatic backup of volume group "test1" 
vgreduce -- volume group "test1" successfully reduced by physical volume: 
vgreduce -- /dev/hda1 

FIXME: we need clarity on a few things. Should the volume group be active? When do we get data loss? 

6.1 当事情发生在晚期时 
如果一个磁盘没有出现警告就失败了,你就不能移走它上面的物理分区到另一个物理卷上,这样你可能会丢失数据,除非在这个失败的PV上的逻辑卷是镜像了的。正确的行为是用一个同样的PV或者至少同样大小的分区来替换这个失败的PV。 

/etc/lvmconf目录包含了LVM数据和结构的备份,包括哪些磁盘做成了PV,每个PV属于哪个VG,每个VG中有哪些LV。 

替换了出错的磁盘之后,你可以用vgcfgrestor命令来恢复LVM数据到新的PV上。它恢复卷组和所有它的信息,但是不会恢复在逻辑卷上的数据。这是因为当LVM数据做一些更改时,LVM命令自动做备份。 


-------------------------------------------------------------------------------- 

7. 为一致性备份做快照 
这是更加难以置信的一个可能性。假设你有一个非常繁忙的服务器,有许多东西运行。为了一个有用的备份,你需要停止大量的程序,否则,你将以数据不一致告终。 

一个规范的例子是从/tmp移动一个文件到/root下,而且/root将先备份。当/root被读的时候,这个文件还不在那里。当/tmp被备份时,这个文件已经不在了。 

另一个事例是保存数据库或目录。如果一个文件在使用状态,我们就没有任何线索了,除非我们给应用程序时间做一个清除的关闭。 

这样的话,新的问题又出现了。我们关闭程序,做我们的备份,接着重新启动它们。如果备份只花几分钟这是很好的,但是,如果它要花数小时,或者你根本不确定它到底要花多久的时候,事情就真的痛苦了。 

LVM可以营救。 

使用LVM,我们可以做一个LV瞬间的快照,然后mount它,再备份它。 

让我们试验一下: 


# mount /dev/test/HOWTO /mnt 
# echo >; /mnt/a.test.file 
# ls /mnt/ 
a.test.file lost+found 
# ls -l /mnt/ 
total 13 
-rw-r--r-- 1 root root 1 Apr 2 00:28 a.test.file 
drwxr-xr-x 2 root root 12288 Apr 2 00:28 lost+found 

Ok,我们现在有些事情要用它一起做。让我们产生这个快照: 


# lvcreate --size 16m --snapshot --name snap /dev/test/HOWTO 
lvcreate -- WARNING: all snapshots will be disabled if more than 16 MB are changed 
lvcreate -- INFO: using default snapshot chunk size of 64 KB 
lvcreate -- doing automatic backup of "test" 
lvcreate -- logical volume "/dev/test/HOWTO" successfully created 

对于“--size”参数以后再详述。让我们mount这个快照: 


# mount /dev/test/snap /snap 
# ls /snap 
total 13 
-rw-r--r-- 1 root root 1 Apr 2 00:28 a.test.file 
drwxr-xr-x 2 root root 12288 Apr 2 00:28 lost+found 

现在我们从原处删除a.test.file,并且检查它是否仍然在快照里: 


# rm /mnt/a.test.file 
# ls /snap 
total 13 
-rw-r--r-- 1 root root 1 Apr 2 00:28 a.test.file 
drwxr-xr-x 2 root root 12288 Apr 2 00:28 lost+found 

太令人惊讶了! 

7.1 它是如何工作的? 
记得我们不得不设置“--size”参数吗?真正发生的事情是,“snap”卷需要有那些当LVM调用时,在原处要被改变的所有块的一个拷贝。 

当我们删除a.test.file时,它的i节点被删除。这引起64KB要被标注成“脏的”--同时原始数据的一个拷贝被写到“snap”卷。这个例子中,我们分配了16MB给快照,因此如果多于16MB的块要被修改,快照就会无效了。 

要决定一个快照分区的正确大小,你将不得不推测基于主LV的使用模式、快照要激活的总时间。例如,在午夜,当无人使用系统的情况下,一个几小时的备份可能要求很小的空间。 

请注意,快照不是永久的。如果你卸下LVM或重启,它们就丢失了,需要重新创建。 


-------------------------------------------------------------------------------- 

8. 冗余 &amp; 性能 
为了性能的考虑,可以将数据分散在几个条块化的磁盘上。这意味着块1在PV A上,块2在PV B上,块3又在PV A上。你也可以条块化跨多余2块磁盘。 

这样的安排意味着你有更多有效的磁盘带宽。也就是说包含了更多的“轴”。以后会详述。 

除此之外,为了提高性能,也可以将你的数据在多个磁盘上有多份拷贝。这叫做镜像。目前,LVM本身还不支持它,但是有多种方法能实现镜像。 

8.1 为何要条块化? 
磁盘的性能至少受三种因素的影响。最明显的是一块磁盘上的数据能连续被读或写的速度。这是当读或写仅连接了一个单一的磁盘的SCSI/IDE总线上的一个大文件时的限制因素。 

接着是到磁盘的有效带宽。如果你在一个SCSI总线上有7块盘,这也许会小于你的磁盘本身写的速度。如果你愿意花足够的钱,你可以避免这个瓶颈成为一个问题。 

然后是响应时间。当成谚语说,响应时间总是坏消息。甚至更坏的是,你不可能通过花更多的钱来降低响应时间!现在出产的大多数磁盘有一个大约7ms的响应时间。还有SCSI响应时间,通常是大约25ms。 

FIXME: need recent numbers! 

这意味着什么?在一个典型情形,总的响应时间大约是30ms。因此你每秒钟只能执行大约33个磁盘操作。如果你想每秒钟能做数千个查询,并且你没有大量的缓存,那么你就非常不走运了。 

如果你有多个磁盘,或者“轴”,在并行工作,那么你可以有多个命令很好地围绕你的响应问题同时执行。有些应用程序,比如一个大的新闻服务器,如果没有条块化或其它I/O敏捷性它甚至不再工作。 

这就是条块化做的事。如果你的总线能胜任,甚至连续的读和写可能会更快。 

8.2 为何不条块化 
条块化没有进一步的措施来解除你的错误机会,按一个“每次一比特”的基本原则。如果你的磁盘任一块死了,你全部的逻辑卷都会丢失。如果你正好连接数据,仅仅文件系统部分丢失。 

最终的选项是镜像的条块化。 

FIXME: make a mirrored stripe with LVM and md 

8.3 LVM本身的条块化 
当用lvcreate创建LV时,指定条块化配置项。有两个相关参数。-i参数告诉LVM应该在多少个PV上分散数据。条块化不是真的按一次一比特的基础来做的,而是按块。-I参数指定单位为KB的块大小。注意它必须是2的一个幂,而且最大的块大小为128KB。 

例如: 


# lvcreate -n stripedlv -i 2 -I 64 mygroup -L 20M 
lvcreate -- rounding 20480 KB to stripe boundary size 24576 KB / 6 PE 
lvcreate -- doing automatic backup of "mygroup" 
lvcreate -- logical volume "/dev/mygroup/stripedlv" successfully created 

性能注意事项 
如果跨同一块磁盘的两个分区来条块化,性能的“增加”可能会是非常消极的--注意避免这样。跨单一的IDE总线上的两个磁盘来条块化也是没用的--除非IDE已经改进了我所记忆的。 

FIXME: is this still true? 

很老的主板可能有两个IDE总线,但是第二个通常是用于一个相对慢的cdrom驱动器。你可以用几个工具来执行基准,最令人注目的是“Bonnie”。ReiserFS人们已经发布了Bonnie++,它可以用来测试性能数据。 

8.4 硬件RAID 
多数高速的Inter x86服务器有硬件RAID控制器。它们中大部分至少有2个独立的SCSI通道。幸运的是,这些在LVM上很少有关系。在Linux能看到如此一个控制器上的任何东西之前,管理员必须在RAID控制器自身里定义一个逻辑驱动器。举一个例子,他(她)可能选择条块化在SCSI通道A上的两个磁盘,然后镜像它们到通道B上的两块磁盘上。这是一个典型的RAID 0/1配置,最佳化性能和数据安全。当Linux在一台采用这种配置的机器上启动时,它只能“看”到在RAID控制器上的一块磁盘,那就是包含了RAID 0/1条块组上四块磁盘的逻辑驱动器。这就是说,至于LVM关心的,仅仅是在这台机器上的一块磁盘,它将被同样地使用。如果这些磁盘中的一个失败了,LVM甚至不知道。当管理员替换了磁盘(甚至很快的用热备硬件),LVM也不知道任一种情况发生了。控制器会重新同步镜像的数据,一切都良好。这里多数人会退一步来询问“那么使用这个RAID控制器,LVM为我带来什么好处呢?”最容易的回答是,多数情况下,你在RAID控制器里定义了一个逻辑驱动器后,你不可能在以后添加更多的磁盘到那个驱动器了。因此,如果你误算了所要求的空间,或者你只是需要更多的空间,你都不可能添加一个新的磁盘或一组磁盘到原来的条块组里。这意味着你必须在这个控制器里创建一个新的RAID条块组,然后用LVM你可以简单的扩展LVM的LV,以致它无缝的跨越RAID控制器里的两个条块组。 

FIXME: Is there more needed on this subject ? 

8.5 Linux软件RAID 
Linux 2.4带着一个非常好的RAID代替出现了。Linux 2.2缺省的,当被Alan Cox发布时,是一个初期的RAID版本的特写,它没有被很好的重视。2.2仍然是早期版本特色的原因是写内核的人们不想在一个稳定的版本里做改动,那样会要求使用者更新。 

更多的人们,包括Red Hat,Mandrake和SuSE,选择用表现得很完美的0.90版本来替换它。 

这里我们只论述0.90版本。 

FIXME: write more of this 


-------------------------------------------------------------------------------- 

9. Cookbook 
9.1 在计算机之间移动LVM磁盘 
使用这些新技术,简单的任务象从一台计算机移动磁盘到另一台计算机就变得有些机警了。在用LVM之前,用户只需要把这块盘放到新的机器上并且mount这些文件系统。使用LVM,就多一点事情要做。LVM结构既保存在磁盘上也保存在/etc/lvmconf目录里,因此,移动一个或一组包含了一个VG的磁盘所要做的唯一的事情是确保这个VG属于的机器不会破坏它的数据。这是通过vgexport命令来实现的。vgexport仅仅从/etc/lvmconf删除关于这个VG的结构,而不会更改磁盘上的任何内容。一旦磁盘放到新的机器上(他们没必要有相同的ID),唯一要做的事情就是修改/etc/lvmconf。这是通过vgimport来做的。 

例如: 

在机器#1: 


vgchange -a n vg01 
vgexport vg01 

在机器#2: 


vgimport vg01 /dev/sda1 /dev/sdb1 
vgchange -a y vg01 

注意你没必要为这个VG使用相同的名字。如果vgimport命令没有保存配置的备份,那就用vgcfgbackup来做。 

9.2 重建/etc/lvmtab 和/etc/lvmtab.d 
FIXME: write about more neat stuff 


-------------------------------------------------------------------------------- 

10. 进一步阅读 
LVM站点 
主要的有效LVM资源 
德文LVM HOWTO 
如果你能读懂德文,它就已经包含了许多信息 
德文HOWTO的翻译 
Peter.Wuestefeld@resnova.de正在将德文HOWTO翻译成英语。看来他们会花许多时间在上面。如果你怀疑我们的HOWTO,或者想知道些什么,请试试他们的努力。 
HP/UX管理磁盘向导 
因为Linux LVM几乎就是HP/UX执行的一个原样,他们的文档对我们也是非常有用的。是一个很好的资料。 

11. 致谢 
我们尝试在这里列出所有帮助我们写这篇HOWTO的人。包括呈报更新、修复或投稿的人,还有帮助我们理解这个主题的人。 

Axel Boldt 
Sean Reifschneider 
Alexander Talos 
Eric Maryniak
posted on 2007-12-02 16:02 network 阅读(695) 评论(0)  编辑 收藏 引用
只有注册用户登录后才能发表评论。