
JavaPOSTM FAQ
What is an FAQ?
An FAQ is a list of frequently asked questions. In addition to supplying

background material, this document will provide answers for the most

frequently asked questions about JavaPOS, posted by visitors to our website

(see http://www.javapos.com).

What is JavaPOS?
It was recognized early on that the emergence of the Java language on the

computing scene offered several major advantages to the developers of retail

applications.

The JavaPOS (Java for Point Of Sale) standard committee was formed by a

collection of retail vendors and end users to examine the ways in which these

Java advantages could best be exploited in the retail environment.

The original JavaPOS programming standard (v1.2) was the end result of ten

months of effort by this committee. It was followed by JavaPOS v1.3, which

defined Java interfaces for three additional retail POS devices (Fiscal Printer,

PIN Pad and Remote Order Display), and JavaPOS v1.4, which added the

Credit Authorization Terminal (CAT) interface requested by Japanese retailers.
1

What is the relationship between the OPOS and JavaPOS standards?
The OLE Point of Sale (OPOS) standard architecture was used as the starting

point for the JavaPOS effort. There were several reasons for this approach.

OPOS was a good first step

The primary goal of OPOS is to permit retail application developers to be

independent of the proprietary details (ex: special escape sequences) of the

retail peripheral devices they accessed.

This was the starting point for the larger goal facing the JavaPOS committee:

to permit the retail application developer to be independent of the

proprietary details of BOTH the peripheral devices they access AND the

POS platform on which the application itself runs. For example, the

JavaPOS standard eliminates the OPOS dependency on the NT Registry.

Reuse of Retail Peripheral Device Models

Over 90% of the voluminous OPOS documentation is devoted to specifying

the properties, events, methods and error codes of the seventeen (as of

OPOS v1.3) defined retail peripheral devices.

These device models are both language AND platform independent, which

allowed their direct incorporation into the JavaPOS standard.

Reduced Learning Curves

Many retail application developers already had experience using the OPOS

APIs, and many retail hardware vendors had experience implementing the

OPOS Control APIs.

Adopting this approach therefore reduced the learning curve for the very

audience JavaPOS was targeting.
2 JavaPOS FAQ —May 12, 2000

Two-Phase Deployment

By sharing the same device models as OPOS, it becomes possible to use a

generic “OPOS bridge” to map existing OPOS Device Controls and Services

into their JavaPOS equivalents. One example of such a bridge has long been

made freely available by Wincor Nixdorf, and others have been created by

NCR and Datafit Corporation.

This bridging capability provides a means of prototyping and testing

JavaPOS-compliant retail applications on existing OPOS terminal

configurations.

What is the relationship between the UnifiedPOS and JavaPOS standards?
The Unified Point of Service (UnifiedPOS) committee was formed by the

Association for Retail Standards (ARTS) under the auspices of the National

Retail Federation (NRF), at the request of leading retailers in the United States.

It was created to ensure that future (post v1.3) releases of JavaPOS and OPOS

would continue to share the same POS device architecture (i.e. each defined

device type would possess the identical set of properties, methods and events

in both standards).

The resulting UnifiedPOS retail device standard (see http://www.nrf-arts.org)

is primarily defined in Unified Modeling Language (UML) and is thus both

O/S independent and language neutral.

The UnifiedPOS technical committee draws its membership primarily from the

JavaPOS and OPOS committees. Both committees have agreed that any new

retail device type (ex: ForeCourt) will first be modeled in UML and added to

the UnifiedPOS standard. Only after such UnifiedPOS approval is obtained,

will the device UML be mapped to the Windows/OLE platform (by OPOS)

and to the Java platform (by JavaPOS).

As a result, starting with the v1.4 version, a formalized procedure was put in

place to ensure that both the OPOS and JavaPOS specification will continue to

contain the identical interfaces (properties, methods and events) to an identical

set of retail devices.
JavaPOSTM FAQ 3

What are the advantages that JavaPOS brings to retail Point of Sale?
POS systems which are conformant to the JavaPOS standard provide several

significant advantages for the retailer.

Reduced POS Terminal Costs

Applications written in the Java language execute by having a Java Virtual

Machine (JVM) interpret their platform independent byte codes. These

applications will therefore execute wherever such a JVM is present

By lowering the minimum requirements for a Point of Sale terminal to a

system capable of supporting a single JVM, the JavaPOS standard enables

retail applications to be run on thin client platforms which are often less costly

than more traditional Windows PC configurations.

Platform Independence

The JavaPOS standard utilizes the JVM as its retail platform, whether present

in a browser, an operating system, or directly embedded within the microcode

of a specialized computer chip.

This language-centric platform is decoupled from any hardware or operating

system specifics. Therefore a JavaPOS-compliant retail application is capable of

running equally well on a thick client Windows95/98, SCO, IBM 4690 or Linux

operating system, or on a thin client SunRay, IBM 4690, Linux, Windows-CE or

Palm OS based system.

The only remaining proprietary element in a JavaPOS-compliant retail

application is then the application code itself.

Reduced administration costs of thin clients

The capability of the Java language platform to reside on thin clients offers

additional cost savings to those sites that run JavaPOS-compliant applications.

If the client portion of a retail application is written as a Java applet or loadable

application, all of the application code resides on the in-store server. This

means that installing or upgrading the POS software on the server results in

the automatic loading of the new software into each local POS terminal, when

the terminal is next booted.
4 JavaPOS FAQ —May 12, 2000

The system administrator need only install a retail application once, and it

becomes installed everywhere in the store. Fix the application once, and it is

fixed everywhere.

The absence of persistent storage on a thin client also eliminates the need to

perform POS terminal data backup and recovery. However local disks could

still be useful to cache pricing information and outgoing purchase transaction

data, so as to allow the thin client POS terminal to continue to function

effectively, even if the server connection was lost for an extended period of

time.

For sites with large numbers of POS terminals, these advantages can result in a

considerable savings in system administrative overhead costs.

Is JavaPOS a complete standard?
JavaPOS is a complete standard for retail point of sale systems in exactly the

same sense that OPOS is.

It maps the UnifiedPOS retail device architecture to the Java platform. Thus

a JavaPOS configuration encompasses most OPOS hardware/software

configurations, as well as a wide range of others.

It standardizes the Java interfaces used by retail POS applications (the

Device Controls) to access and control POS devices.

It standardizes the internal interface used by these Device Controls to locate

and load the set of device drivers (Device Services) appropriate for the POS

terminal configuration, via the Java Configuration Loader (JCL).

It standardizes the interfaces supported by these Device Services, which

must respond to requests from the JavaPOS applications (as relayed through

the corresponding Device Control), and pass back asynchronous events.

It references the JavaComm API which allows pure Java Device Services to

locate and access their respective peripherals for RS 232 type devices. For

other device attachment options such as RS 485 and USB, the Device Service

must (currently) still access the individual OS-specific port protocol routines

directly.
JavaPOSTM FAQ 5

Working implementations for all the above JavaPOS components except the

Device Services (typically supplied by the device manufacturer) and of

course the JavaPOS application itself, are freely available (either directly or

through linkage) on the JavaPOS website.

What are the exact JavaPOS Deliverables?
The JavaPOS standards committee has produced the following set of

deliverables:

JavaPOS Architectural Whitepaper

This whitepaper describes the philosophy and architecture of the JavaPOS

standard and serves as an introduction to the other documents.

Java for Retail POS Programming Guide

This 600+ page document defines the JavaPOS standard. It is comparable in

many ways to both the OPOS Application Programmer’s Guide and the

OPOS Control Programmer’s Guide combined. It specifies the application-

level Java language interface to the set of all defined retail peripheral

devices, as well as the APIs for their corresponding Device Services.

JavaPOS Frequently Asked Questions (FAQ) List

Answers to a set of frequently asked questions concerning the JavaPOS

standard. You are in fact reading this FAQ now.

JavaPOS Source Files

These files provide the foundation upon which JavaPOS-compliant

applications and device services must be constructed. They are all available

on the JavaPOS web site.

1. Codes

The collection of all JavaPOS status and error codes
6 JavaPOS FAQ —May 12, 2000

2. Exceptions and Events

The set of all defined JavaPOS Exception and Event subclasses

3. Retail Device Controls

The base Device Control Interface, and for each retail device category

(ex: Scanner, Cash Drawer):

a. A derived JavaPOS Device Control Interface (currently v1.4)

b. A set of Device Control constants

c. A completely implemented Device Control class

4. Retail Device Services

The base Device Service Interface

A derived JavaPOS Device Server Interface (currently v1.4) for each

category.

A sample device service.

JavaPOS Configuration / Loader (JCL)

The jpos.config/loader (JCL) is a simple binding (configuration & loading) API

which allows a JavaPOS control to bind to the correct JavaPOS service in a

manner independent of the actual configuration mechanism. For POS

applications, it represents a somewhat minimum (but extensible) functional

equivalent of the NT Registry.

All JavaPOS Device Controls (v1.4 and above) provided on the JavaPOS

website will use this API.

A reference open source implementation of the JCL is also available on this

website, maintained by IBM and the JavaPOS technical committee. This

reference JCL comes complete with JavaDoc documentation, examples, sample

code, a browser-based configuration editor and its very own FAQ.
JavaPOSTM FAQ 7

Can I construct a 100% pure Java solution for retail POS?
By combining the above software on the JavaPOS website with the publicly

available JavaComm v2.0 API and platform implementations (see

http://java.sun.com/products/javacomm), it now becomes possible to

construct COMPLETE Java based solutions for retail POS, that include

platform-neutral retail applications as well as platform neutral device services.

Essentially:

• The Device Services use the JavaComm API to access device port data

streams.

• The Device Controls use the JCL API to determine which Device Services

correspond to the hardware devices connected to a particular POS station.

• The Applications use the various Device Control APIs to access and control

these devices.

and the implementations for all three (as well as the source code for the last

two) are, as indicated, openly available on the net.

How do you deliver JavaPOS on a Windows Terminal
There is a choice: you can either use Pure Java Device Services (which can

support their peripherals on multiple platforms) or you can use an OPOS

bridge. In either case, the JavaPOS application is unaffected.

Platform-neutral Java deployment

Windows 95 and Windows NT systems can be converted into JavaPOS

platforms with the addition of the 100% pure Java JVM, and the Windows

implementation of the JavaComm API (both freely available from the JavaSoft

website).

By combining a full compliment of JavaPOS compliant Device Services with a

JavaPOS compliant application, the entire retail system (application and device

drivers) becomes portable.
8 JavaPOS FAQ —May 12, 2000

It becomes possible for example to load Linux onto the same Intel

configuration, reboot, and aside from editing a single configuration file, have

the same application access the same set of retail peripherals, USING THE

EXISTING SET OF DEVICE SERVICES. No code modification or recompiling is

required.

Windows-only Java deployment

Alternatively, if you do not have pure Java Device Services for the devices you

want to drive, but do have preexisting OPOS drivers, you can use a

JavaPOS/OPOS bridge. Note that such bridges are not 100% pure Java, as they

must invokes native code written in C.

Any true JavaPOS/OPOS bridge must deliver the complete JavaPOS

functionality to a Java POS application using OPOS drivers. It it possible to do

so because the device functionality of JavaPOS exactly mirrors that of OPOS.

Such bridges have been deployed by customers of Wincor Nixdorf and

demonstrated by NCR and Datafit, and other companies have developed them

as well

Note that JavaPOS applications utilizing a JavaPOS/OPOS bridge can be

subsequently redeployed on another operating system (ex: Linux) without

modification, although a new set of device services (based upon JavaComm, or

specific to that OS platform) would have to be obtained.

When can I start implementing my own JavaPOS solution?
The JCL is available today as a 100% pure Java package to configure the POS

terminal and provide linkage from the JavaPOS Device Controls to the Device

Services layer. All the JavaPOS Device Controls are also implemented and

available.

By adding an OPOS bridge over an existing set of OPOS drivers (see above),

JavaPOS-compliant retail applications can be written today and deployed on

Windows 95/98/NT systems.

Likewise, fully compliant JavaPOS solutions can be deployed today on

Windows 95/98/NT, IBM’s 4690 OS Version 2, Solaris and Linux, provided

there is access to a corresponding Java Device Service for each configured POS

hardware device on the station.
JavaPOSTM FAQ 9

How do I get my comments in for consideration by the JavaPOS committee?
Post them directly from the JavaPOS web site. All such comments will be

reviewed and responded to by members of the JavaPOS committee.

Is it possible to write efficient, robust 100% Pure Java device drivers?
The part of a device driver that needs to be so efficient that you might consider

writing it in assembler, or at least C, is the low-level port handling. With Java,

the handling of the serial, parallel or (soon) USB port itself is done within the

Java Communications 2.0 API implementation. Support for this API is

available today from JavaSoft for the JDK 1.1.4 release and above on Solaris or

Windows, and is available externally for Linux.

The JVM which executes the Java byte codes of the device driver is compiled

from native code for the target machine, using assembler or C, as the JVM

writer deems appropriate.

The 100% pure Java Device Service is thus given platform independence and is

responsible only for translating the byte streams between the program and the

relevant port. For instance, it might interpret a program command "cut paper"

as "Escape X Y".

The Java language is ideally suited to doing this kind of translation, and, in

practice, delivers more than adequate efficiency, especially when the driver

code has been precompiled or JIT (Just In Time) compiled. In the latter cases,

the overall performance of Java is comparable to native-mode compiled C++.

How do I migrate from an OPOS to a JavaPOS solution?
A clear OPOS to JavaPOS migration strategy exists. Its overarching goal is to

“free” existing POS applications from their dependency on the Windows

operating system, and allow end users and ISVs the same flexibility in

selecting an OS and hardware platform vendor that they have today in

selecting among multiple suppliers for each POS device type.

In brief, the strategy consists of a few well defined steps:
10 JavaPOS FAQ —May 12, 2000

1. Use an OPOS bridge to access existing OPOS Device Services. This allows

JavaPOS-compliant applications to be written and deployed immediately

which support the set of existing devices in the store. Such deployments will

be limited only to thick-client Windows-based systems however.

2. As true JavaPOS-compliant Device Services appear (developed and tested

on any platform which supports the JavaComm API ... including Windows)

the OPOS bridge begins to “narrow”. Once the last pure Java Device Service

appears, the OPOS bridge can be discarded altogether.

3. At this point the entire retail POS application (including the JavaPOS Device

Services) may now be installed and run on ANY JavaPOS-compliant

platform (thick or thin client) without further change.

How can I prepare for JavaPOS?
Three main areas need to be addressed in your IT planning for JavaPOS:

infrastructure, asset reusability and organization.

For infrastructure, you will minimally need to support TCP/IP on the local

area network in the store. If IP is not present you will need to develop an IP

addressing scheme and determine how you are going to administer it. DHCP

and DNS will provide lots of flexibility but you will need to architect

addressing properly and consider the impact on your enterprise.

Depending on the size of your stores and your Wide Area Network (WAN) you

may need an httpd process running on your in-store servers. You will need to

budget head count and capital for the infrastructure improvements. If you are

just getting started with an IP WAN make sure to address security issues up

front. Firewalls and access lists will affect your network design and overall

cost.

Asset reusability planning refers to determining if your existing registers and

servers can be utilized. Depending on your requirements they may need to be

upgraded or replaced. While your vendor may offer some assistance, you

should dedicate some staff to prototyping and evaluating after market upgrade

solutions. You have to consider both the hardware characteristics and the

operating software you are going to use. The registers are likely to run a DOS

variant or MS Windows now, with possibly Linux as an option for the future.

The investigation effort should provide details for the capital plan.
JavaPOSTM FAQ 11

If you outsource development the organizational impact is minimized. If you

develop your own applications you need to consider if your staff is capable of

taking on a new development paradigm. Determine the level of training your

existing personnel need and whether you need to supplement their skills with

new hires and/or consultants. It would be wise to pick a small project and use

this as a training opportunity for your team. A kiosk project for example may

be a good one to gain experience on before taking on POS. During the test

project, validate everything; object design skills, development tools, operating

environment,

You also need to determine if your organization’s structure will complicate

things and if so, whether you need to reorganize. An advantage of writing in

Java is the ability to reuse objects across a variety of platforms. For example, a

POS object could be used in a handheld terminal or in an internet application.

If the POS, handheld and internet programming is done in three distinct

groups you have to account for extending the object for specific needs and the

impact one groups changes will have on the others. You may need to establish

"owners" of reusable objects to avoid versioning problems while leveraging

existing expertise.

What about international coverage?
With their international perspective, the JavaPOS-Japan committee members

have ensured the applicability of JavaPOS to the Japanese market. A complete

Japanese translation of all key JavaPOS documents is directly accessible from

the JavaPOS website.

What are JavaPOS plans for 2000?
Under the current arrangement, all future retail POS device specifications will

be issued by the UnifiedPOS committee, and then adopted simultaneously by

the JavaPOS and OPOS committees.

The JavaPOS committee will therefore concentrate on:

• Mapping new UnifiedPOS device specifications to Java

• Organizing “connectathons” between developers of JavaPOS retail

applications and device services

• Supporting the software (Device Controls and JCL) currently available on

the JavaPOS website
12 JavaPOS FAQ —May 12, 2000

• Providing a focal point for JavaPOS expertise and serving as the primary

means of communication between JavaPOS developers
JavaPOSTM FAQ 13

14 JavaPOS FAQ —May 12, 2000

	JavaPOSTM FAQ
	What is an FAQ?
	What is JavaPOS?
	What is the relationship between the OPOS and JavaPOS standards?
	OPOS was a good first step
	Reuse of Retail Peripheral Device Models
	Reduced Learning Curves
	Two-Phase Deployment

	What is the relationship between the UnifiedPOS and JavaPOS standards?
	What are the advantages that JavaPOS brings to retail Point of Sale?
	Reduced POS Terminal Costs
	Platform Independence
	Reduced administration costs of thin clients

	Is JavaPOS a complete standard?
	What are the exact JavaPOS Deliverables?
	JavaPOS Architectural Whitepaper
	Java for Retail POS Programming Guide
	JavaPOS Frequently Asked Questions (FAQ) List
	JavaPOS Source Files
	1. Codes
	2. Exceptions and Events
	3. Retail Device Controls
	a. A derived JavaPOS Device Control Interface (currently v1.4)
	b. A set of Device Control constants
	c. A completely implemented Device Control class

	4. Retail Device Services

	JavaPOS Configuration / Loader (JCL)

	Can I construct a 100% pure Java solution for retail POS?
	How do you deliver JavaPOS on a Windows Terminal
	Platform-neutral Java deployment
	Windows-only Java deployment

	When can I start implementing my own JavaPOS solution?
	How do I get my comments in for consideration by the JavaPOS committee?
	Is it possible to write efficient, robust 100% Pure Java device drivers?
	How do I migrate from an OPOS to a JavaPOS solution?
	1. Use an OPOS bridge to access existing OPOS Device Services. This allows JavaPOS-compliant appl...
	2. As true JavaPOS-compliant Device Services appear (developed and tested on any platform which s...
	3. At this point the entire retail POS application (including the JavaPOS Device Services) may no...

	How can I prepare for JavaPOS?
	What about international coverage?
	What are JavaPOS plans for 2000?

